bilangan genap antara 1 dan 40 yang habis dibagi 4

Kemudiancontoh bilangan prima ke-4 yaitu 7 : 7+6= 13, 13+6= 19, 19+6= 25, dst.. Dari hasil penjumlahan diatas maka dapat kita ambil kesimpulan, bahwa bilangan 13, 19 adalah termasuk bilangan prima karena hanya bisa habis di bagi dengan angka 1 dan bilangan itu sendiri. Sedangkan angka hasil 25, ini bukan termasuk bilangan prima, karena angka 25 dapat habis di bagi 5 juga selain dibagi dengan
Bilangangenap 1-100 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 Bilangan genap positif 2, 4, 6, 8, 10, 12, 14, 16, 18, Bilangan genap negatif , -10, -8, -6, -4, -2 Bilangan genap kurang dari 11
1. Jumlah semua bilangan asli diantara 1 dan 100 yang habis dibagi 4 tetapi tidak habis dibagi 3 adalah …. A. 432 B. 768 C. 786 D. 1200 E. 1218 Soal ini masuk ke dalam B. Kemampuan Numerik. Bilangan antara 1 dan 100 yang berarti 1 dan 100 tidak ikut dihitung yang habis dibagi 4 4, 8, 12, …, 96 Ini termasuk ke dalam deret Aritmetika, dengan a suku pertama = 4, b beda = 4, dan suku terakhir Un = 96. dimana, Un = a + n-1b 96 = 4 + 4n – 4 4n = 96 n = 24 Sn = n/2 a + Un S24 = 24/2 4 + 96 S24 = = 1200 ——————————– Bilangan antara 1 dan 100 yang habis dibagi 3 yaitu 3, 6, 9, 12, …, 99. karena soal diminta tidak habis dibagi 3, kita harus mencari bilangan habis dibagi 3 dan sekaligus bilangan dapat dibagi 4, untuk mengurangi hasil jumlah bilangan habis dibagi 4 sehingga didapatlah “bilangan yang habis dibagi 4 tetapi tidak habis dibagi 3” KPK antara bilangan 4 dan 3 yaitu 12 sehingga barisan bilangan habis dibagi 3 yang juga bilangan habis dibagi 4 adalah sbb 12, 24, 36, …, 96. dengan a = 12, b = 12, Un = 88 Un = a + n-1b 96 = 12 + 12n – 12 12n = 96 n = 8 Sn = n/2 a + Un S8 = 8/2 12 + 96 S8 = 4 . 108 = 432 Jadi, Jumlah semua bilangan asli diantara 1 dan 100 yang habis dibagi 4 tetapi tidak habis dibagi 3 adalah 1200 – 432 = 768 jawaban B. 768 2. Indonesia – Australia = 12 – 36, Sulawesi – Jeneponto = … A. -88 B. -13 C. -24 D. 3 E. 44 Pembahasan INDONESIA – AUSTRALIA [Konsonan – Vokal] – [Konsonan – Vokal] [14 + 4 + 14 + 19] – [9 + 15 + 5 + 9 + 1] – [19 + 20 + 18 + 12] – [1 + 21 + 1 + 9 + 1] [51] – [39] – [69] – [33] 12 – 36 SULAWESI – JENEPONTO [Konsonan – Vokal] – [Konsonan – Vokal] [19 + 12 + 23 + 19] – [21 + 1 + 5 + 9] – [10 + 14 + 16 + 14 + 20] – [5 + 5 + 15 + 15] [73] – [36] – [74] – [40] 37 – 34 = 3 Jadi, jawab D. 3 3. Ibrahim = 8, Ismail = 7. Nilai Ramdani = … A. 8 B. 7 C. 24 D. 59 E. 44 Pembahasan IBRAHIM -> Terdiri dari 7 huruf = 8. Berarti 7 + 1 = 8 ISMAIL -> Terdiri dari 6 huruf = 7. Berarti 6 +1 = 7 RAMDANI -> Terdiri dari 7 huruf = … Berarti 7 +1 = 8 Jawaban A. 8 4. Dea = 10, Duta = 46. Nilai Crosby = … A. 75 B. 69 C. 82 D. 39 E. 94 Pembahasan D = 4 E = 5 A = 1 DEA = 4 + 5 + 1 = 10 D = 4 U = 21 T = 20 A = 1 DUTA = 4 + 21 + 20 + 1 = 46 CROSBY = 3 + 19 + 15 +19 + 2 + 25 = 82 Jadi, jawab adalah C. 82 5. Berat jenis air yang paling besar adalah pada suhu… A. 0 derajat B. 100 derajat C. 4 derajat D. 273 derajat E. -4 derajat Pembahasan Misteri air terungkap ketika para ilmuwan fisika mempelajari tentang suhu dan kalor. Mereka mengamati, bahwa semua zat akan memuai jika dipanaskan. Tetapi air mempunyai keanehan dalam hal ini. Air ternyata malah menyusut jika dipanaskan dari suhu 0 ke 4 derajat Celsius. Ketika air menyusut massa air tetap, sedangkan volumenya berkurang, sehingga massa jenis air akan bertambah. Ingat massa jenis = massa/volume Sifat anomali air adalah keanehan air yang menyusut ketika dipanaskan antara suhu 0 sampai 4 derajat Celsius. Massa jenis air terbesar diperoleh pada suhu 4 derajat Celsius, karena pada suhu ini air memiliki volume yang paling kecil. Berat jenis adalah perbandingan relatif antara massa jenis sebuah zat dengan massa jenis air murni. Air murni bermassa jenis 1 g/cm³ atau 1000 kg/m³. Berat jenis tidak mempunyai satuan atau dimensi. Berat jenis mempunyai rumusn atau w/v dengan satuan n/m^3 dengan m = massa, g = gravitasi, v = volume dan w = weight berat. Dapat disimpulkan berat jenis sebanding dengan massa jenis. Sehingga, berat jenis air yang paling besar adalah pada suhu 4 derajat Jawab C. 4 derajat 6. 1 – 3 – 5 – 15 – 17 – …. – … A. 19, 21 B. 31, 37 C. 51, 53 D. 20, 32 E. 21,34 Pembahasan 1 x 3 = 3 —- 3+2 = 5 5 x 3 = 15 —- 15+2 = 17 17 x 3 = 51 —- 51+2 = 53 53 x 3 = 159 —- 159+2 = 161 Jadi, jawab adalah C. 51, 53 7. 8 – 32 – 16 – 24 – … A. 128, 64 B. 64, 128 C. 72, 120 D. 120, 72 E. 123,74 Pembahasan 8 x 2 = 16 [2] 8 x 3 = 24 [3] 8 x 4 = 32 q q –> r ——— Kesimpulan p –> r Jika nasi goreng disajikan, maka buah-buahan disajikan. Akan tetapi kesimpulan tersebut tidak ada pada option jawaban, sehingga yang kita cari adalah pernyataan yg ekuivalen atau setara dgn p–> r Sehingga p –> r = ~r –> ~p Ekuivalensi atau setara. ini juga menjadi rumus kontraposisi Jadi kesimpulannya p –> r = ~r –> ~p = Jika buah-buahan tidak disajikan maka nasi goreng tidak disajikan ============================== =================== Rumus ekuivalensi pernyataan setara yang perlu teman-teman ingat p –> q = ~p V q = ~q –> ~p 9. MENGUAP … = … SAKIT A. panas badan B. lelah – dokter C. mengantuk – demam D. tidur – istirahat E. tempat tidur – obat Pembahasan Buat menjadi sebuah kalimat Menguap tanda mengantuk, sedangkan demam tanda sakit Jawab C. mengantuk – demam 10. Bu Revi membagikan tanah warisan sebnyak 5 ha. kepada 5 org anaknya. Rana mendapat 26% tanah, Rini mendapat 85 are, Reni mendpat 12/15 dr Rani, Rina mendapatkan dua kali dr Rani. Siapa yang lebih kaya dari Rini? A. Rana dan Reni B. Rana dan Rani C. Rana dan Rina D. Rina dan Reni E. Hanya Rana saja Pembahasan 5 ha = 500 are Rana = 26% . 500 are = 130 are Rini = 85 are Reni = 12/15 . Rani Rina = 2 . Rani Rani = Rani Reni Rani Rina = 12 15 30 = 4 5 10 Reni = 4/19 . 285 = 60 Rani = 5/19 . 285 = 75 Rina = 10/19 . 285 = 150 Jadi, yang lebih kaya dari Rini adalah Rana dan Rina. Jawab C. Rana dan Rina 11. Antonim insinuasi A. Terang2an B. Caci-maki C. Rayuan D. Pujian E. Sembunyi-sembunyi Pembahasan in•si•nu•a•si n tuduhan tersembunyi, tidak terang-terangan, atau tidak langsung; sindiran; Jadi, antonim lawan makna/lawan kata dari insiuasi adalah A. Terang2an 12. Jika x = 2y, y = 3z, dan x y z = 3888, maka A. x 8 x 7 = 56 7 adalah 42 -> 7 x 6 = 42 6 adalah 30 -> 6 x 5 = 30 5 adalah 20 -> 5 x 4 = 20 4 adalah 12 -> 4 x 3 = 12 3 adalah -> 3 x 2 = 6 jadi, jawab adalah B. 6 15. Amir punya uang setengah uang Budi. Jika Budi memberi 500 ke Amir, maka Amir punya uang 400 lebih sedikit dari Budi. Berapa jumlah uang mereka? A. 2300 B. 2700 C. 4200 D. 4800 E. 5100 Pembahasan B = x -> x – 500 A = 1/2 x -> 1/2x + 500 A – B = 400 x – 500 – 1/2x + 500 = 400 1/2x – 1000 = 400 1/2x = 1400 A x = 2800 B Sehingga A = 1400 + 500 = 1900 Sehingga B = 2800 – 500 = 2300 Jumlah uang mereka adalah A + B = 1900 + 2300 = 4200 jawab adalah C. 4200 16. Kuman penyakit = Api A. Arang B. Panas C. Merah D. Kebakaran Pembahasan untuk mudahnya, buat menjadi sebuah kalimat, Kuman menyebabkan penyakit, sedangkan Api menyebabkan kebakaran Jadi, jawab adalah D. Kebakaran 17. Seorang pedagang menjual kain dengan harga 80 ribu dan memperoleh laba 25% dari harga beli. Berapakah harga beli kain? A. 100 rb B. 96 rb C. 64 rb D. 80 rb E. 120 rb Pembahasan ini dengan melogikan saja sudah bisa menjawab. Harga beli pasti lebih rendah di banding kan harga Jual kan untuk laba? Harga jual saja 80 ribu, pasti harga belinya dibawah 80 ribu. dan ternyata opsi dibawah 80 ribu cuma 1, ya udah itu jawabnya
Bilangangenap adalah bilangan yang satuannya habis dibagi 2. 15,546 + 1,75 + 0,40 =. Untuk bilangan asli n, tuliskan s(n) = 1 + 2 + + n dan p(n) = 1 × 2 × × n. Sehingga, 9073240 ∶ 4 = 2268310 c. Q={bilangan genap antara 1 dan 40 yang habis dibagi 4. Bilangan genap, maka habis dibagi 2 sedangkan 2 adalah bilangan prima terkecil.
\n \n\n\nbilangan genap antara 1 dan 40 yang habis dibagi 4
Caramengidentifikasi bilangan prima yang besar. Bilangan prima genap terkecil adalah 2. Bilangan prima ganjil terkecil adalah 3. Semua bilangan prima di atas 3 dapat diwakili oleh rumus 6n + 1 dan 6n -1 untuk n>=1. Buktikan itu! Ada 25 bilangan prima antara 1 dan 100. Semua bilangan prima kecuali 2 dan 5 berakhiran 1, 3, 7 atau 9 (perhatikan?)
B himpunan bilangan genap yang habis dibagi 3 C. himpunan bilangan genap yang habis dibagi bilangan prima D. himpunan bilangan asli antara 1 dan 5 yang habis dibagi 3. Jawaban : A. 10. (2, 4, 6, 8, 10) dinyatakan dengan kata-kata adalah. . A. himpunan bilangan genap antara 0 dan 12 B. himpunan bilangan genap antara 1 dan 10
Demikianuntuk 9, 11, 13, . Menjual televisi dan memperoleh keuntungan 25%. 1:hitunglah jumlah bilangan antara 1 dan 400 yang habis dibagi 5 tetapi tidak habis dibagi 7. jumlah 4 suku pertama (s 4).? bilangan kuadrat pangkat tiga antara 1 sampai dengan 5000. 6 ) 80 × 60 = 4.800. jumlah bilangan kelipatan 4 antara 200 dan 400 adalah.
Manakahbilangan yang habis dibagi 4 dan berikan alasannya! a) 384. b) 376596. x harus bilangan genap dan (7 + 4 + x) = (11 + x) habis dibagi 3. kemungkinan-kemungkinannya: 11 + x = 12, x = 1 (tidak memenuhi karena x harus bilangan genap) jika selisih antara jumlah digit ganjil dengan jumlah digit genapnya habis dibagi 11.
B himpunan bilangan genap yang habis dibagi 3. C. himpunan bilangan genap yang habis dibagi bilangan prima. D. himpunan bilangan asli antara 1 dan 5 yang habis dibagi 3. 18. {2, 4, 6, 8, 10} dinyatakan dengan kata-kata adalah A. himpunan bilangan genap antara 0 dan 12. B. himpunan bilangan genap antara 1 dan 10. C. himpunan bilangan genap
Pembahasan Ingat kembali: -suku ke-n deret aritmatika: -rumus jumlah suku pertama: Pertama kita tentukan semua jumlah bilangan antara 1 sampai 50, maka. Maka diperoleh: Selanjutnya kita tentukan jumlah bilangan yang anatar 1 sampai 50 yang habis dibagi 3, dengan bilangan terkecil adalah 3 dan bilangan terbesar adalah 48. Sehingga diperoleh:
Semuabilangan genap yang terletak di antara 1 dan 100 dan habis dibagi 3 . dan T berturut-turut menyembunyikan lambang bilangan 396, 418, dan 352, tentukanlah lambang bilangan yang tersembunyi di balik huruf H, I, dan U GaMeMath Info M ath Bab 5 Barisan, Deret, dan Notasi Sigma 115 Ia melipat kertas ini menjadi 2 bagian yang sama besar
.

bilangan genap antara 1 dan 40 yang habis dibagi 4